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1. Introduction

The simulation and calculation of time domain transient signals
or frequency domain spectra is central to nuclear magnetic reso-
nance (NMR) spectroscopy [1]. Whether externally controlled
pulse sequences, sample rotation in solids, or the inherent molec-
ular dynamics in fluids or gases are present, some form of calcula-
tion is typically required to understand the resulting NMR
measurements [2–4]. Theoretical modeling in NMR spectroscopy
need not be complicated and involved. The motion of a single
isochromatic vector according to the Bloch equations [5] and the
evolution of the product operators [6] when two spins are involved
are two straightforward approaches that are central to understand-
ing the generation, evolution, and detection of NMR signals. In
some cases, like the continuous averaging in solids due to magic
angle spinning or the application of discontinuous and cyclic rf
pulse sequences, Floquet [7,8], and average Hamiltonian [9] theo-
ries have been respectively developed to aid in the physical under-
standing of the spectral impact of the averaging or the removal of
the non-secular contributions to the full nuclear spin Hamiltonian.
Inherently adiabatic problems or those firmly embedded in the
opposite sudden regime are two limits easily addressed by the
Van Vleck transformation [10,11]. Whether a continuous, a discon-
tinuous, periodic and cyclic, or an adiabatic or sudden perturbation
to a large isotropic portion of the static spin Hamiltonian is accom-
plished, Floquet, average Hamiltonian, and the Van Vleck transfor-
mation all do remarkably well at describing measured spectra. The
description of experiments in clear physical terms offered by these
ll rights reserved.
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approximation techniques is only possible when a theory amena-
ble to the inherent time dependence in the Hamiltonian is used
and when all aspects of the time dependence i.e. the amplitude,
frequency, and phase insure that the time variation is a small per-
turbation. If these two requirements are not guaranteed or several
interfering time dependencies are present then a different theory
more amenable to the time dependence must be used. Examples
include multi-modal Floquet theory [12] or making the time inde-
pendent part of the nuclear spin Hamiltonian a perturbation on the
time dependent portion. Unfortunately in these more challenging
situations traditional semi-analytical theories break down and di-
rect numerical solutions to the Schrödinger equation, Liouville
von Neumann equation, or Bloch equation must be generated [13].

The purpose of this manuscript is to introduce, develop, and
demonstrate the application of the Dirac–Frenkel–McLachlan
(DFM) time dependent variation of parameters [14–17] approach
to an NMR problem. Although never explicitly used in the treat-
ment of time domain NMR problems to date, the DFM approach
has successfully predicted the dynamics of optically prepared wave
packets on excited state molecular energy surfaces [17,18]. Unlike
the Floquet, average Hamiltonian, and Van Vleck transformation
methods mentioned above, the DFM approach is not restricted by
either the size or symmetry of the time domain perturbation. A
particularly attractive feature of the DFM method is that measured
data can be used to motivate a parameterized trial function choice
and that the DFM theory provides the machinery to calculate the
optimum, minimum error choices for these parameters [18]. Even
with optimized parameters a poor parameterized trial function
will lead to a poor match with real experiments. For example,
application of the DFM approach to a time dependent problem
described by a time dependent Hamiltonian with characteristic
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frequency x in Liouville space with the jqðtÞÞ ¼
P

njqnðtÞÞeinxt trial
function choice and the |qn(t)) variable parameters automatically
generates Floquet theory. Application of the Floquet approach to
a discontinuous time domain problem leads to many Fourier
coefficients and an intractable problem, but the alternative use of
average Hamiltonian theory yields useful results. In other words,
simulation ease and impact is best realized by initially choosing
a trial function that adequately and accurately resembles the
measured data.

There are many NMR problems available to demonstrate the
application of the DFM variation of parameters: spin diffusion in
solids [19], heteronuclear decoupling during magic angle spinning
in solids [20], cross polarization in rotating solids [21], radiation
damping and feedback in inhomogeneously broadened systems
[22], classical diffusion in an rf gradient in the presence of chemical
shifts and or scalar, dipolar, or quadrupolar couplings [23], etc. To
develop the DFM variation of parameters for NMR problems a sim-
ple application where experimental data is immediately available
was chosen to evaluate the performance of the theoretical approach.
Experimental free precession signals for long and reduced volume
samples of water in one dimensional linear and quadratic shaped
magnetic fields applied parallel to the applied static magnetic field
are reproduced with the DFM theory. The DFM simulations use
available molecular and hardware dependent parameters such as
diffusion constants and pulse sequence characteristics. The particu-
lar choice of the treatment of translational molecular motion was
motivated by the availability of a solution to the problem generated
by Hahn for the case of diffusion in a linear field [24]. In this way, the
DFM modeling of the linear field free precession and spin echo sig-
nals serves as a benchmark comparison to existing theory while the
evolution of spin magnetization in the yet to be solved quadratic
shaped magnetic field and mixed linear and quadratic fields is
new and will be described below.

The next section describes how to apply the DFM variation of
parameters to NMR problems for the case of molecular diffusion
in a linear and quadratic shaped field. Following this introduction,
a brief experimental section describing the NMR instrument and
samples is provided. Finally the theory is applied to the modeling
of experimental data.

2. Theory

It is important to realize throughout this section that the DFM
variation of parameters is completely general and can be applied
to any time dependent differential equation. In addition, it pro-
vides the machinery to optimize any trial function guess for the
observable signal, density operator element, or magnetization
and provides an internal self-contained estimate of the quality of
the trial function guess.

2.1. The DFM variation of parameters

A starting point for the application of the DFM theory to the
problem of diffusion in a linear and quadratic magnetic field is
the Bloch–Torrey equation [25]

@

@t
M
!
ðtÞ ¼ c M

!
ðtÞ � H

!
þDr2 M

!
ðtÞ � CðM

!
ðtÞ �M

!
eqÞ ð1Þ

where M
!
ðtÞ is the classical x, y, z, and t spatially and time dependent

magnetization, H
!

is the applied magnetic field, r2 is the Laplacian
operator, C is the relaxation matrix, c is the gyromagnetic ratio, D
is the diffusion coefficient, and M

!
eq ¼ ðN h

•

x0=kTÞẑ is the thermal
equilibrium magnetization written in terms of the number of spins
N, Planck’s constant �h, Boltzmann’s constant k, temperature T, the
Larmor frequency x0 = cH, and the direction of the applied static
magnetic field ẑ. The first step of the DFM variation of parameters
is to define a functional for M
!
ðtÞ or a function of Eq. (1) that is zero

valued when the correct trial function for the magnetization M
!
ðtÞ is

identified, non-zero valued in the limit of an inaccurate trial func-
tion, and larger valued for increasingly poor choices of the trial
function used for M

!
ðtÞ. Although there is an arguable infinite num-

ber of functional guesses that meet these criteria, the simplest and
most consistent with the original DFM work [17,18] is
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where the integral is performed over the volume element dV.
As written, Eq. (1) anticipates that the dependent variables in

the magnetization are space (x, y, z), (r, h, /), or volume V and time.
However in addition to this inherent spatial and temporal depen-
dence M

!
ðtÞ can also be considered a function of a set of n + 1 time

dependent variable parameters {nn(t)} = {n0(t), n1(t), n2(t), . . ., nn(t)}.
In direct analogy to the DFM theory [17,18], the variation of
TðM
!
ðtÞ; @M

!
ðtÞ=@tÞ in Eq. (2) with respect to the variation in
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for p = 0, 1, 2 . . . n + 1. Simultaneously solving the n + 1 equations
will determine each parameter in the {nn(t)} set. The nn(t) functions
correspond to the parameters that yield the best agreement of the
trial function M

!
ðfnnðtÞgÞ with the true solution to Eq. (1).

Both Eqs. (2) and (3) are expressed in terms of the real spatial
coordinates assigned by the direction of the applied field H

!
. How-

ever, since a trial magnetization function is parameterized as
M
!
ðfnnðtÞgÞ, the problem reduces to the determination of the time

dependence of the {nn(t)} parameters. It is more natural to instead
write Eqs. (2) and (3) in terms of the parameter vector n

!
ðtÞ ¼

Pn
p¼0

npðtÞn̂p where the n + 1 time independent unit vectors n̂p corre-
spond to the n + 1 separate orthogonal directions in an (n + 1) �
(n + 1) dimensional parameter space. This definition of the param-
eter vector along with the realization that @M

!
ðfnnðtÞgÞ=@t ¼Pn

p¼0ð@M
!
ðfnnðtÞgÞ=@npðtÞÞ � ðdnpðtÞ=dtÞ allows Eq. (3) to be rewrit-

ten as
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where the elements of the column vector d n
!
ðtÞ=dt are the appropri-

ate dnn(t)/dt time derivatives. The elements of the matrix A
�
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in Eq. (4). Eqs. (2) and (4) are used in tandem to evaluate the quality
of the trial function M

!
ðfnnðtÞgÞ and to calculate the values of the
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{nn(t)} parameters that provide the lowest possible value for
TðM
!
ðtÞ; @M

!
ðtÞ=@tÞ. The solution for n

!
ðtÞ obtained from Eq. (4) is

used to determine of M
!
ðfnnðtÞgÞ as a function of time. The next sec-

tion simplifies the above expressions by considering actual experi-
mental conditions and subsequent sections describe one way to
apply the method to experiments.

2.2. Reduction to the experimental case

The case of one dimensional diffusion in a linear and/or qua-
dratic shaped magnetic field considered here is much simpler than
the three dimensional situation described above. The Laplacian re-
duces to one dimension and the time scale of the experiment per-
mits spin–lattice relaxation effects and thus the effect of M

!
eq to

be negligible. Transverse relaxation effects are still present
although the relaxation matrix C reduces to the 1/T2 scalar value.
In this limit, the time evolution of the complex transverse magneti-
zation M+(t) = Mx(t) + iMy(t) in the rotating frame magnetic field
H
!
¼ ðGzþ Kz2Þẑ described by the field gradient G and its derivative

K reduce Eq. (1) to
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As with the general case, Eqs. (7) and (8) can be used to deduce
the elements of the matrix A

�
as

Ar;p ¼
Z
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and the elements of the vector B
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as
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 !
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Eqs. (9) and (10) are needed to determine the time evolution of
the {nn(t)} parameter set from the solution to Eq. (4). The quality of
the trial function solution to Eq. (7) in terms of the optimized set of
functions {nn(t)} is assessed from the functional TðM

!
ðtÞ; @M

!
ðtÞ=@tÞ

defined by Eq. (8).

2.3. Single Gaussian solution

The success enjoyed by Heller in the choice of a parameterized
Gaussian wave function to describe the evolution of coherences in
a wave packet translating on an excited state energy surface
[17,18] prompts the application of the three parameter Gaussian
trial magnetization

MG
þðfn2ðtÞgÞ ¼ M0e�n2ðtÞz2�n1ðtÞz�n0ðtÞ ð11Þ

where M0 ¼ M
!

eq � k̂. An attractive feature of the choice of a Gaussian
trial magnetization MG

þðfn2ðtÞgÞ is that all of the elements of the ma-
trix A

�
and the vector B

!
shown in Eqs. (9) and (10) respectively can

be analytically determined regardless of the fundamental constants
e.g. D, G, K, T2 used and of the time t. Using Eq. (11) with Eq. (4)
yields
d
dt

n2ðtÞ ¼ �4Dn2ðtÞ2 þ iK

d
dt

n1ðtÞ ¼ �4Dn1ðtÞn2ðtÞ þ iG

d
dt

n0ðtÞ ¼ 2Dn2ðtÞ � Dn1ðtÞ2 þ
1
T2

ð12Þ

Inserting the solution to these equations into the definition for
MG
þðfn2ðtÞgÞ in Eq. (11) followed by calculation of the value of the

functional in Eq. (8) yields TðM
!
ðtÞ; @M

!
ðtÞ=@tÞ ¼ 0. This implies that

as long as Eqs. (12) are solved, MG
þðfn2ðtÞgÞ is an exact solution to

the Bloch Eq. (7).

2.3.1. Homogeneous rf pulses
The appropriateness of the MG

þðfn2ðtÞgÞ trial magnetization to
the solution of the Bloch Eq. (7) is captured by the value of the
nn(0) parameters. As long as the initial magnetization is Gaussian
distributed symmetrically (or in a completely anti-symmetric fash-
ion) about z = 0 the DFM variation of parameters with the
MG
þðfn2ðtÞgÞ trial magnetization produces the true spatial and tem-

poral development of the magnetization. The parameter values at
t = 0 specify the magnetization distribution immediately following
a p/2 rf pulse. In the case where there is no rf inhomogeneity and
the sample is small and contained within the rf excitation coil,
n0(0) = n1(0) = n2(0) = 0 and the magnetization is uniformly excited.
The solutions to Eq. (12) with these initial conditions provide the
optimized nn(t) parameters needed to calculate MG

þðfn2ðtÞgÞ in Eq.
(11). The free precession signal S(t) is the integral of MG

þðfn2ðtÞgÞ
over the dimensions or the length L of the sample as

SðtÞ ¼
Z L=2

�L=2
MG
þðfn2ðtÞgÞdz ¼

Z þ1

�1
MG
þðfn2ðtÞgÞgðzÞdz ð13Þ

where g(z) = 1 for �L/2 6 z 6 L/2 and g(z) = 0 elsewhere. The effects
of the p/2–s–p spin echo pulse sequence can also be treated with
this variational approach. Application of a p rf pulse at the time
t = s after the p/2 rf pulse essentially exchanges the complex com-
ponents of the magnetization with each other. Specifically, a p rf
pulse elicits the transformation M+ ? M� and vice versa. This means
that the solutions to Eq. (12) also describe the spatial and temporal
evolution of the spin echo magnetization. This is true as long as the
new initial parameter values immediately after the p rf pulse at the
time t = s = 0+ are appropriately related to the parameter values at
the time t = s before the p rf pulse as nn(0+) = nn(s)�. Application of
the spatially abbreviated integral in Eq. (13) to the MG

þðfn2ðtÞgÞmag-
netization following the p rf pulse provides the time development
of the spin echo signal, and thus an equation that can be compared
to experiment.

2.3.2. Inhomogeneous rf pulses: Gaussian profile
The effects of diffusion on free precession and spin echo signals

in the presence of inhomogeneous rf pulses can also be explored
using the DFM variation of parameters. In order to compare theory
to experiment, consider the special example of an rf coil partially
enclosing an infinitely long cylindrical sample with the long axis
parallel to the direction of the applied G and K fields and where
the amplitude of the applied rf field behaves according to
H1(z) = H1(0)exp[�n2(0)z2]. In this case, a small tip angle inhomo-
geneous rf pulse yields n2(0) – 0 and n1(0) = n0(0) = 0. The solutions
for the {n2(t)} set of parameters from Eq. (12) with these initial con-
ditions provides MG

þðfn2ðtÞgÞ and the free precession signal from
Eq. (13) with g(z) = H1(z)/H1(0). The functional form of the rf
excitation H1(z)/H1(0) is included as diffusion will move rf pulse
excited magnetization from and thermal equilibrium magnetiza-
tion into the active rf coil region of the infinitely long sample.

The p/2–s–p spin echo signal generated from a small tip angle
pulse followed by a homogenous p pulse is calculated in exactly
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the same way as in the previous section. Since the p rf pulse con-
verts M+ into M� and vice versa, the parameters immediately after
the p rf pulse at the time t = 0+ are related to the parameters imme-
diately before the p rf pulse as nn(0+) = nn(s)�. These values are used
as initial conditions to solve Eq. (12) for the {n2(t)} parameter set
and ultimately the spin echo magnetization MG

þðfn2ðtÞgÞ. Applica-
tion of Eq. (13) with g(z) = H1(z)/H1(0) provides the spin echo signal
that can be compared to experiment.

A limitation of this approach is the neglect of the effects of rf
inhomogeneity on the p rf pulse. In order to account for these ef-
fects on the spin echo magnetization and the effects of rf inhomo-
geneity on measured signals resulting from any multiple rf pulse
sequence, a wave packet trial magnetization can be used and is de-
scribed below.

2.4. Gaussian wave packet solution

The Gaussian trial magnetization in Eq. (11) adequately de-
scribes NMR signals in the presence of diffusion when small sam-
ples are used and homogeneous rf fields are applied. Additionally,
the single Gaussian trial magnetization can be used to determine
the free induction signals for infinitely long samples stimulated
with a small tip angle rf pulse with Gaussian spatial inhomogene-
ity. However, the use of a single Gaussian trial magnetization is
limited as the signal corresponding to multiple rf pulses and to rf
pulses with non-Gaussian spatial distributions cannot be satisfac-
torily treated. These problems are circumvented by instead choos-
ing a Gaussian wave packet trial magnetization [18]

Mwp
þ ðfn2ðzn; tÞgÞ ¼ M0

Xn

q¼0

mþðfn2ðzq; tÞgÞ ð14Þ

written in terms of individual Gaussian magnetizations

mþðfn2ðzq; tÞgÞ ¼ e�n2ðzq ;tÞðz�zqÞ2�n1ðzq ;tÞðz�zqÞ�n0ðzq ;tÞ ð15Þ

Each separate Gaussian m+({n2(zq, t)}) is centered at position zq

and is characterized by the three variational parameters n0(zq, t),
n1(zq, t), and n2(zq, t). The number of optimizable parameters in-
creases from 3 for the single Gaussian trial magnetization shown
in Eq. (11) to 3(n + 1) for the wave packet; 3 parameters for each
of the n + 1, zq offset Gaussian functions mþðfn2ðzq; tÞgÞ comprising
Mwp
þ ðfn2ðzn; tÞgÞ. The dimensionality of the parameter vector n

!
ðtÞ

concomitantly increases the dimensionality of A
�

and B
!

. Arranging
the elements of n

!
ðtÞ in terms of the separate Gaussian basis mag-

netizations m+({n2(zq, t)}) centered at the position zq provides the
elements of the matrix A

�
as

A3qþr;3kþp ¼
Z

@mþðfn2ðzq; tÞgÞ
@npðzq; tÞ

� �y
� @mþðfn2ðzk; tÞgÞ

@nrðzk; tÞ

� �
dz ð16Þ

and the elements of the vector B
!

as

B3kþp ¼
Z

@mþðfn2ðzk; tÞgÞ
@npðzk; tÞ

� �y

� D
@2

@z2 � icGz� icKz2 � 1
T2

 !Xn

q¼0

mþðfn2ðzq; tÞgÞdz ð17Þ

where the indices q and k include 0, 1, 2, . . ., n, while the indices q
and r are limited to 0, 1, 2. Provided that Eq. (4) is exactly solved for
n
!
ðtÞ or the time dependence of the {n2(zq, t)} parameter set, the

Gaussian wave packet trial magnetization Mwp
þ ðfn2ðzn; tÞgÞ exactly

solves the Bloch Eq. (7). The use of a sum of Gaussian magnetization
basis functions m+({n2(zq,t)} used to define the wave packet reduces
the 3(n + 1) coupled equations for the {n2(zq, t)} parameter set
developed from Eq. (4) into n + 1 sets of 3 coupled equations char-
acterized by the specific offset displacement zq as
d
dt

n2ðzq; tÞ ¼ �4Dn2ðzq; tÞ2 þ iK

d
dt

n1ðzq; tÞ ¼ �4Dn1ðzq; tÞn2ðzq; tÞ þ iGþ 2iKzq

d
dt

n0ðzq; tÞ ¼ 2Dn2ðzq; tÞ � Dn1ðzq; tÞ2 þ
1
T2
þ iGzq þ 2iKz2

q

ð18Þ

These equations are the same set of equations shown in Eq. (12)
with the exception of the added offset dependent constants in the

dn
!

0ðzq; tÞ=dt and dn
!

1ðzq; tÞ=dt equations. These additional constants
do not prevent the straightforward analytical or numerical solution
to Eq. (18) and thus the wave packet magnetization Mwp

þ ðfn2ðzn; tÞgÞ
can be obtained from Eqs. (14) and (15). Proceeding in direct anal-
ogy to Sec. 2.3 for the single Gaussian solution, calculation of the
functional in Eq. (8) from Mwp

þ ðfn2ðzn; tÞgÞ written in terms of the
parameters optimized according to Eq. (18) again yields

TðM
!
ðtÞ; @M

!
ðtÞ=@tÞ ¼ 0. This implies that as long as Eqs. (18) are

solved, Mwp
þ ðfn2ðzn; tÞgÞ is also an exact solution to the Bloch Eq. (7).

It is important to note that the clean separation of the wave
packet variation parameters into (n + 1) sets of 3 coupled equations
in Eq. (18) is only true for a wave packet of Gaussian basis func-
tions. It is the mathematical properties of the exponential function
that leads to a factoring and reduction of the number of terms in A

�
and B

!
for the wave packet magnetization. This ultimately uncou-

ples the evaluation of the {n2(zn, t)} set into groups of similar equa-
tions like Eq. (18).

2.4.1. Inhomogeneous rf pulses: arbitrary profile
The Gaussian wave packet solution to the Bloch equation is

capable of modeling the free precession and spin echo signals gen-
erated by rf pulses of any specified inhomogeneity. To accomplish
this goal the number of Gaussian basis functions m+({n2(zq, t)}) con-
tributing to the total wave packet Mwp

þ ðfn2ðzn; tÞgÞ, the uniform sep-
aration Dz = zq+1 � zq, and the initial Gaussian basis function width
n2(zq,0) before the application of an rf pulse must be specified. To
ensure a smooth spectral profile as a function of the real displace-
ment z in the wave packet Mwp

þ ðfn2ðzn; tÞgÞ, the initial line width
n2(zq,0) is limited by the coalescence point of two Gaussian func-
tions Dz as n2(zq,0) 6 2/(Dz)2.

Application of an inhomogeneous rf pulse to thermal equilib-
rium magnetization in a perfectly homogeneous static magnetic
field can be approximated as M+(z,0) = M0 sin[h(z)]. The spatially
dependent tip angle h(z) is related to the inhomogeneous rf field
as h(z) = cH1(z). This initial spatial dependence in the actual
M+(z,0) complex magnetization is incorporated into the initial
t = 0 wave packet trial magnetization Mwp

þ ðfn2ðzn;0ÞgÞ by adjusting
the initial amplitude of each of the Gaussian basis functions
m+({n2(zq,0)}), or equivalently by assigning n0(zq,0) =
�ln(sin[h(zq)]) in the Gaussian basis function centered at the posi-
tion zq. The free precession signal following an inhomogeneous rf
pulse in the presence of diffusion is then calculated by solving
for the time dependence of the {n2(zn, t)} parameter set from Eq.
(18) given that n2(zq,0) 6 2/(Dz)2, n1(zq,0) = 0, and n0(zq,
0) = �ln(sin[h(zn)]). These time dependent parameters are used to
calculate the time dependence of each of the separate Gaussian ba-
sis functions m+({n2(zq, t)}) and ultimately the Gaussian wave pack-
et magnetization Mwp

þ ðfn2ðzn; tÞgÞ. The result can be used along
with Eq. (13) to determine the free precession signal where
Mwp
þ ðfn2ðzn;0ÞgÞ replaces MG

þðfn2ðtÞgÞ and g(z) = H1(z)/H1(0).
The effects of general rf inhomogeneity on the spin echo signal

generated from the p/2–s–p pulse sequence can also be treated
with the Gaussian wave packet approach. Since a pair of inhomo-
geneous rf pulses differing in either duration or amplitude by a fac-
tor of two are used, a better representation of the spin echo pulse
sequence that approximates the effect of rf inhomogeneity is h(z)–
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s–2h(z). In the limit of a perfectly homogeneous static magnetic
field, the application of a 2h(z) rf pulse to the transverse magneti-
zation M±(z,s) at the time t = s mixes the complex components into
each other as

M�ðz;0þÞ ¼
1
2
ð1� cos½2hðzÞ�ÞMþðz; sÞ

þ 1
2
ð1	 cos½2hðzÞ�ÞM�ðz; sÞ ð19Þ

Any magnetization left along the z axis from the first h(z) rf pulse is
rotated into the transverse plane by the second 2h(z) rf pulse and
does not contribute to the echo signal. The spatial dependence in
the real M+(z, 0+) magnetization following the 2h(z) rf pulse is incor-
porated into the t = 0+ wave packet trial magnetization
Mwp
þ ðfn2ðzn;0þÞgÞ by separately determining the parameter set

{n2(zn, 0+)} after the 2h(z) pulse for each of the Gaussian basis func-
tions in terms of the respective values {n2(zn,s)} prior to the 2h(z) rf
pulse applied at the time t = s. Eq. (19) for the case of general rf
inhomogeneity can be approximated as

mþðfn2ðzq;0þÞgÞ ¼
1
2
ð1þ cos½2hðzqÞ�Þmþðfn2ðzq; sÞgÞ

þ1
2
ð1� cos½2hðzqÞ�Þm�ðfn2ðzq; sÞgÞ ð20Þ

for each Gaussian trial function in the wave packet. The set of new
parameters after the 2h(z) rf pulse {n2(zq,0+)} in terms of the param-
eter set prior to the 2h(z) rf pulse {n2(zq,s)} and the complex conju-
gate value {n2(zq,s)�} introduced by the m�({n2(zq,s)}) dependence
in Eq. (20) is obtained by using the definition for m+({n2(zq, t)})
shown in Eq. (15) and by solving Eq. (20) for the {n2(zq, 0+)} values.
It is these new values at the time t = 0+ that serve as initial condi-
tions for the determination of the {n2(zn, t)} parameters from Eq.
(18) for the spin echo magnetization Mwp

þ ðfn2ðzn; tÞgÞ and thus the
measured signal.
3. Experimental

All NMR experiments were performed using a wide bore Oxford
Instruments 6.95 T superconducting solenoid magnet. A Nalorac
double resonance probe mounted in an Oxford Instruments 18
channel shim set and connected to a double resonance Tecmag
Apollo pulse programmer was used to obtain all free precession
and echo envelope signals in this study. A standard 5 mm outer
diameter Pyrex NMR tube loaded with a 5 cm column of deionized
water was used to mimic an infinitely long sample. Linear
1.4 G/cm, 2.8 G/cm, and 4.5 G/cm and quadratic 6.4 G/cm2,
12.5 G/cm2, and 18.8 G/cm2 fields were established and calibrated
by respectively adjusting the z1 and z2 shim currents applied to
the Oxford shim set and by relating the spectral width of the Fou-
rier transformed free precession signal to sample length for a finite
1 cm long water sample contained in a Shigemi tube centered in
the rf coil. All theoretical calculations and data processing were
accomplished using Mathematica.
4. Results

The DFM variation of parameters as applied to diffusion in one
dimensional linear and quadratic shaped magnetic fields as de-
scribed in Section 2 provides useful theoretical results that are eas-
ily compared to experiment. Analytical expressions for the
spatially dependent free precession and spin echo magnetization
and the concomitant signal can be developed in either linear or
quadratic shaped magnetic fields. However, examples involving
mixed linear and quadratic shaped magnetic fields are often not
analytically tractable due to the sheer number of terms required
to solve the Bloch Eq. (7). Examples where analytical results can
be generated from the DFM approach considers the free precession
and spin echo magnetizations and signals for a small sample of
length L completely enclosed within the rf coil. Since the applied
rf field in this case is perfectly homogeneous, the single Gaussian
trial magnetization applies with n0(0) = n1(0) = n2(0) = 0. The solu-
tion to Eq. (12) yields n0(t) = t/T2 + (cG)2Dt3/3, n1(t) = �icGt, and
n2(t) = 0. These parameters define the free precession magnetiza-
tion as

MG
þðfn2ðtÞgÞ ¼ M0eicGzt�ðcGÞ2Dt3

3�
t

T2 ð21Þ

and the observed free precession signal as

SðtÞ ¼ 2M0

cGt
sin

cGLt
2

� �
e�ðcGÞ2Dt3

3�
t

T2 ð22Þ

A similar analysis for the spin echo envelope signal in this
example yields n0(2s) = 2s/T2 + 2(cG)2Ds3/3 and n1(2s) = n2(2s) =
0 from the solution to Eq. (12). These parameters produce Hahn’s
famous result [24]

SðtÞ ¼ MG
þðfn2ð2sÞgÞ ¼ M0e�ðcGÞ2D2s3

3 �
2s
T2 ð23Þ

Another situation where the DFM variation of parameters pro-
vides a useful result with a limited number of terms considers
the free precession signal due to the application of a linear mag-
netic field to an infinitely long sample following a small tip angle
rf pulse with a Gaussian spatial excitation profile. Here the solution
to Eq. (12) with the n0(0) = n1(0) = 0 and n2(0) – 0 initial conditions
along with h = cH1(0)tp where tp is the pulse length yields the free
precession signal as

SðtÞ ¼ M0sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2n2ð0Þð1þ 2n2ð0ÞDtÞ

r
e�
ðcGÞ2 t2

8n2 ð0Þ
�ðcGÞ2Dt3

12�
t

T2 ð24Þ

after application of Eq. (13) with g(z) = exp(�n2(0)z2).
The solid black lines for the one rf pulse spectra in Fig. 1 and the

black symbols for the echo envelope signal in Fig. 2 correspond to
experimental data obtained for a 5 cm long tube of water centered
on the 1.6 cm long rf coil. The measured data in Figs. 1a–c and 2a–c
are reproduced in Figs. 1d–f and 2d–f respectively for comparison
to both the single Gaussian in Figs. 1a–c and 2a–c and the Gaussian
wave packet in Figs. 1d–f and 2d–f trial functions. The three differ-
ent magnetic field gradient choices of 1.4 G/cm, 2.8 G/cm, and
4.5 G/cm produce the three images of increasing width in Fig. 1a
and d and the echo envelope signals corresponding to the cross,
open circle, and x in Fig. 2a and d respectively. The same relation-
ship between applied quadratic magnetic field variation and line
width for the three 6.4 G/cm2, 12.5 G/cm2, and 18.8 G/cm2 ampli-
tudes yield the offset images in Fig. 1b and d and the echo envelope
signals for the cross, open circle, and x in Fig. 2b and e. Experimen-
tal and computational examples of the mixed gradient case are also
included in Figs. 1 and 2. Values of 1.4 G/cm and 12.5 G/cm2 were
used to generate the lower image in Fig. 1c and f while the offset
images in Fig. 1c and f were obtained with a 2.8 G/cm and
18.8 G/cm2 linear and quadratic field values. The echo envelope
signals shown in Fig. 2c and f all correspond to the application of
a 1.4 G/cm linear magnetic field variation while the quadratic field
value increases as 6.4 G/cm2, 12.5 G/cm2, and 18.8 G/cm2 for the
cross, open circle and x symbol respectively. The light gray lines
shown in Fig. 1a–c correspond to the signals calculated from the
single Gaussian trial magnetization MG

þðfn2ðtÞgÞ with
D = 2.2 � 10�5 cm2/s, T2 = 2.6 s, the appropriate applied magnetic
field variation amplitudes, n0(0) = n1(0) = 0, and n2(0) = 0.6 cm�2

as estimated by tracking the spectral intensity for a small droplet
of water translated through the rf coil along the z axis. The same
constant values were used to generate the light gray curves shown



Fig. 1. Comparison of experimental one dimensional images for water shown as the solid black lines to the results of the single Gaussian (a–c) and the Gaussian wave packet
(d–f) trial functions shown as the light gray lines. The experimental images of increasing width shown in (a) and (d) respectively correspond to the application of a 1.4 G/cm,
2.8 G/cm, and 4.5 G/cm constant field gradient applied to a 5 cm long sample contained in a 1.6 cm long rf coil. The experimental images of increasing vertical offset shown in
(b) and (e) respectively correspond to the application of 18.8 G/cm2, 12.5 G/cm2, and 6.4 G/cm2 and quadratic magnetic fields to the same sample. The lower images shown in
(c) and (f) respectively correspond to the application of 2.8 G/cm and 18.8 G/cm2 and magnetic field variations while the upper images respectively correspond to the
application of 1.4 G/cm and 12.5 G/cm2 linear and quadratic magnetic fields. The ordinates in all of these plots correspond to M(x)/M0.
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in Fig. 1d–f with the important exception that the signal is calcu-
lated from the Gaussian wave packet trial magnetization
Mwp
þ ðfn2ðzn; tÞgÞ constructed from 65 Gaussian basis functions

m+({n2(zq, t)}) and the

n0ðzq;0Þ ¼
1

ð1þ e�ðzq�L0=2Þ2=gÞð1þ e�ðzqþL0=2Þ2=gÞ
ð25Þ

n1(zq, 0) = 0, and n2(zq, 0) = 500 cm�2 values. The full width at half
maximum L0 = 1.9 cm and the slope g = 0.1 cm of the edges of logis-
tic function product in Eq. (25) were estimated by moving a droplet
of water along the z axis through the rf coil. In terms of each
m+({n2(zq, t)}), the n0(zq, 0) value determined from Eq. (25) is a scalar
that is used to define m+({n2(zq, t)}) at t = 0. Calculation of the spin
echo envelope signals for exactly the same conditions yields the so-
lid and dashed light gray lines in Figs. 2a–c and d–f for the single
Gaussian MG

þðfn2ð2sÞgÞ and the Gaussian wave packet
Mwp
þ ðfn2ðzn;2sÞgÞ trial magnetizations respectively.
5. Discussion

The central theme of this manuscript is to demonstrate a simple
NMR application of the time dependent variation of parameters ap-
proach pioneered by Dirac, Frenkel, and McLachlan that approxi-
mately, and in the cases considered here, solves the Bloch
equation. As mentioned in Section 1, the DFM approach generates
many if not all of the time dependent approaches to solving the
time dependent Schrödinger equation, the Liouville von Neumann
equation, or the Bloch equation familiar to NMR spectroscopists.
Straightforward examples include the eigenvalue solution
jwðtÞi ¼

P
n expð�iEntÞjwnð0Þi and Floquet’s solution jwðtÞi ¼P

nanðtÞ expð�inxtÞjwnð0Þi with the variable parameters an(t)
respectively applied when either a time independent Hamiltonian
with eigenvalues En and eigenfunctions |wni or a time dependent
Hamiltonian oscillating at frequency x are encountered. The
strength of the DFM variation of parameters approach in compar-
ison to the customary methods to solving time dependent prob-
lems is flexibility. The approach does not a priori require a
specific form for the wave function, density operator, or magneti-
zation as the machinery used to develop and test the optimum
parameter values is independent of the function choice. The actual
values of the variation parameters {nn(t)} do depend on the trial
function choice and trial function selection can be motivated by
the time dependence of measured data.

The approach provides an interesting bridge between experi-
ment and theory where one typically compares raw experimental



Fig. 2. Comparison of experimental spin echo envelope signals for water shown as the black symbols to the results of the single Gaussian (a–c) and the Gaussian wave packet
(d–f) trial functions shown as the light gray lines. The experimental spin echo envelope signals corresponding to the cross, open circle, and x symbols in (a) and (d)
respectively correspond to the application of 1.4 G/cm, 2.8 G/cm, and 4.5 G/cm constant gradients applied to a 5 cm long sample contained in a 1.6 cm long rf coil. The
experimental spin echo envelope signals corresponding to the cross, open circle, and x symbols in (b) and (e) respectively correspond to the application of 6.4 G/cm2, 12.5 G/
cm2, and 18.8 G/cm2 quadratic magnetic fields to the same sample. The echo envelope signals shown in (c) and (f) all correspond to the application of a 1.4 G/cm constant
magnetic field gradient while the value of the linear gradient increases as 6.4 G/cm2, 12.5 G/cm2, and 18.8 G/cm2 for the cross, open circle and x symbol respectively. The
ordinates in all of these plots correspond to M(t)/M0.
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data to direct analytical or numerical simulations. This is a rather
challenging prospect when many spins are involved, nonlinear
couplings between spins are present, or time dependent processes
in solids such as magic angle spinning, decoupling, or cross polar-
ization exist. Instead of such a direct comparison between experi-
ment and theory, a subset of time dependent solutions to the
problem can be considered by allowing the measured data to guide
trial function selection in terms of n + 1 variation parameters
{nn(t)}. The optimum values of these n + 1 parameters according
to the DFM approach essentially corresponds to fitting the trial
function to theory.

The effects of molecular diffusion on one dimensional images
and spin echo envelope signals in applied linear and quadratic
shaped magnetic fields were chosen as an experimental platform
for demonstrating the application of the DFM variational approach
to NMR problems for three reasons. The effects of molecular mo-
tion on simple images and spin echo envelope signals in constant
gradients are well known, the simple Bloch decay and spin echo
pulse sequences and associated changes in the z1 and z2 shims
can be performed on any high resolution liquid state pulsed NMR
instrument, and the theoretical approach can, in most cases, be
completed by hand with some help of a desktop computer.

The application of the DFM approach to NMR problems also has
computational cost benefits in comparison to a direct numerical
simulation. For the example described by Eq. (1) the free induction
signal can be iteratively determined at all time points t and spatial
positions x, y, and z. In direct analogy, the free induction signal for
the magnetization described by Eq. (1) could also be solved itera-
tively using the DFM approach. However, with the DFM approach,
the spatial portion of the magnetization is treated analytically and
the only remaining iteration variable is time t. Therefore, the cost
benefit of the DFM approach is that a reduced number of numerical
simulations must be performed.

A consequence of the choice to analyze measurements from
well understood experiments is the ability of the DFM approach
to generate classic expressions for measured signals in certain
experimental situations. Examples of the calculation of the Bloch
decay free precession signal and the recovery of Hahn’s famous
expression for the spin echo envelope signal for a small sample
well within an rf coil are provided in Eqs. (22) and (23). Each of
these examples are largely consistent with experimental observa-
tions in the case where the physical molecular displacement on
the experimental time scale is small with respect to the sample
size. Conditions not treated here include a larger diffusion coeffi-
cient, smaller sample, or longer experiment time which require
that boundary effects be considered. As long as these physically
large sample, slow motion limits are experimentally realized, Eq.
(22) predicts that the one dimensional image captured by the sinc
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function is broadened by both the effects of transverse relaxation
and molecular motion via the �t/T2 and �(cG)2Dt3/3 terms respec-
tively. Hahn’s result in Eq. (23) generated using the DFM method is
independent of sample shape as long as homogeneous rf pulses are
applied. Here the signal leading to the spin echo reverses phase at
the time t = s and information relating to the sample shape refo-
cuses at the echo maximum. Hence, the echo envelope decay is re-
lated only to transverse relaxation and diffusion.

The analytical aspects of the DFM approach are further demon-
strated in Eq. (24) by the free precession signal corresponding a
long sample enclosed by a much smaller rf coil. The effects of rf
inhomogeneity on coherence excitation and detection are approx-
imated in this expression by choosing a non-zero n2(0) value that
defines both the initial small tip angle single Gaussian trial func-
tion as MG

þðfn2ð0ÞgÞ ¼ expð�n2ð0Þz2Þ and the rf coil detection pro-
file as gðzÞ ¼ MG

þðfn2ð0ÞgÞ. The Gaussian rf detection profile is
included in Eq. (24) as the quadratic time dependent term in the
exponential while the familiar linear and cubic time dependent
terms capture the effects of relaxation and diffusion respectively.
The cubic diffusion terms in Eqs. (22) and (24) differ by a factor
of four. The difference in these two equation stems from the differ-
ence in the excitation and detection profile applied to each trial
magnetization. The excitation profile for the free precession signal
in Eq. (22) is a flat, homogenous function whereas the excitation
profile used to generate Eq. (24) is Gaussian. This Gaussian excita-
tion reduces the effect of diffusion as the entire sample is not ex-
cited uniformly leading to the factor of four attenuation in the
cubic term in Eq. (24) in comparison to Eq. (22).

These special cases of the Bloch decay free precession signals for
a restricted volume sample and an infinitely long sample with
Gaussian excitation and detection as well as the spin echo enve-
lope signal for the restricted volume sample capture the analytical
aspects of the DFM approach. However, for most experimental sit-
uations where linear and quadratic shaped magnetic fields are ap-
plied to long samples with non-Gaussian rf excitation and
detection profiles where the Gaussian wave packet solutions to
the Bloch Eq. (7) apply, the sheer number of variational parameters
is so large that reporting analytical solutions is not possible given
limited space. Therefore numerical solutions to Eqs. (12) and (8)
are used to compare to experiment.

Comparison of the theoretical results shown in Fig. 1d–f indi-
cates that the Gaussian wave packet trial function provides a far
superior match to the experimental data than the single Gaussian
trial function. The source of the failure of the single Gaussian trial
function to reliably reproduce experimental data is seen by com-
paring Fig. 1a and d and by acknowledging the results of rf field
mapping. Here the small 1.6 cm long rf coil surrounding the 5 cm
long sample does not deliver a homogeneous p/2 rf pulse to the en-
tire sample. Instead, the magnetization at the coil edges experi-
ences a diminished tip angle and coupling this with an applied
linear magnetic field variation leads to the one dimensional box
like images in Fig. 1a and d. Therefore to a crude level of approxi-
mation, the experimentally obtained images in Fig. 1a and d report
on the shape of the rf field. In the case of the single Gaussian trial
function the shape of the initial magnetization distribution
MG
þðfn2ð0ÞgÞ ¼ expð�n2ð0Þz2Þ can only ever be Gaussian. This func-

tion is not consistent with the actual rf excitation profile deter-
mined by translating a droplet of water through the rf coil. The
results of the Gaussian wave packet analysis in Fig. 1d for applied
linear fields provide a much better agreement with experiment.
The consequence of the rf field profile on the quadratic shaped
magnetic field images in Fig. 1b and e are different than in the case
of the standard linear shaped magnetic field images shown in
Fig. 1a and d. It is the linear relationship between measured fre-
quency and position as x = cGz provided by the z1 shim that
makes analysis of Fig. 1a and d straightforward as the spectral
intensity is flat, i.e. I(x) / constant. The quadratic relationship be-
tween measured frequency and position as x = cKz2 leads to a
shaped distribution I(x) / (cKx)�1/2. This means that the center
of the sample at z = x = 0 creates an infinite intensity singularity
that drops to zero as a function of (x)�1/2 seen in Fig. 1b and e.
The primary difference between the single Gaussian and Gaussian
wave packet trial function results in these figures respectively oc-
curs at large frequency x. The effect of finite rf coil length that pro-
duced the box like z1 based images in Fig. 1a and d, or essentially a
spectrum that probes just a fraction of the sample, causes the z2
image to drop to zero at the frequency corresponding to the edge
of the rf excitation region. This effect is captured by the Gaussian
wave packet trial function in Fig. 1e using the product of logistic
functions shown in Eq. (25) that corrects for an imperfect rf excita-
tion profile. The single Gaussian trial function does not recover this
‘‘perpendicular’’ high frequency singularity as the initial Gaussian
magnetization distribution is a poor model for actual experiments.
A similar good agreement between experiment and theory for the
single Gaussian versus the Gaussian wave packet trial functions is
observed in the mixed linear and quadratic field cases shown in
Fig. 1c and f.

The ability of the Gaussian wave packet trial function to repro-
duce simple one dimensional images in linear and quadratic
shaped magnetic fields and the corresponding poor performance
of the single Gaussian trial function persists in the analysis of the
spin echo envelope signals as shown in Fig. 2. Again, the failure
of the single Gaussian trial function to reproduce experimental
spin echo envelope signals is due to the simple fact that the exper-
imental rf excitation and detection profiles are not Gaussian. The
initial width of the single Gaussian trial function was chosen to
be identical to those used to generate the free precession signals
in Fig. 1a and b. The simulated spin echo envelope signals shown
in Fig. 2b have smaller T2 values for larger applied gradients than
the measured data suggesting that the single Gaussian trial
function does not reliably reproduce the measured dynamics for
the application of quadratic shaped fields. On the other hand, the
Gaussian wave packet trial function naturally incorporating the
appropriate rf field profile does remarkably well at reproducing
experiment using the appropriate T2 value measured for water as
shown in Fig. 2d–f.

Although the Gaussian wave packet trial function is computa-
tionally more intensive than the single Gaussian, the Gaussian
wave packet more effectively reproduces experiment. The
Gaussian wave packet trial function only begins to deviate from
measured data at large quadratic field values. This discrepancy be-
tween experiment and the Gaussian wave packet generated results
is likely due to a primitive handling of the rf pulse excitation. In the
case of a single rf pulse the excitation is taken to correspond to an
initial rf profile neglecting any effects of gradient induced offset
frequencies. In actuality, an rf field applied in the x̂ direction with
a spatially dependent Rabi frequency x1(z) does not simply rotate
z magnetization in the y–z plane; this approximation changes the
size of magnetization along the ẑ and ŷ axes. Rather, the initial z
magnetization rotates around an effective field [x1(z)2 + (cGz +
cKz2)2]1/2 to yield transverse magnetization distributed in the x-y
plane. The incorrect handling of the initial rf pulse has little effect
on the one dimensional images as the phase deviation away from
the expected ŷ axis only occurs at the edge of the rf coil for large
z values. These isochromats provide a limited contribution to the
measured signal or one dimensional image. Application of a second
rf pulse, that again reflects the direction of the effective field, to
generate the spin echo envelope signal can in principal compound
the disagreement between experiment and theory. It may be that it
is this effect that leads to the discrepancy between the Gaussian
wave packet trial function predictions and experiment at high qua-
dratic field values. Another more likely possibility for this high K
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value disagreement revolves around the implementation of the
operation prescribed by Eq. (19). The set of known parameters
{n2(zn,s)} constituting Mwp

� ðfn2ðzn; sÞgÞ immediately before the p
rf pulse of the spin echo pulse sequence are used to generate the
new set of parameters {n2(zn, 0+)} comprising Mwp

� ðfn2ðzn;0þÞgÞ at
the time t = 0+ immediately after the p rf pulse. The parameter sets
before {n2(zn, s)} and after {n2(zn, 0+)} the p rf pulse are related by
the rf pulse tip angle taken to be 2h(z) = p at z = 0. Even in the limit
considered here where the effective field direction is neglected, the
only way to relate the two parameter sets is to fit the Gaussian trial
function Mwp

þ ðfn2ðzn;0þÞgÞ to the 2h(z) weighted mixture of the
Gaussian wave packet trial functions Mwp

� ðfn2ðzn; sÞgÞ before the
application of the 2h(z) pulse. A different, more efficient approach
was used here. Instead of dealing with the entire Gaussian wave
packet Mwp

þ ðfn2ðzn;0þÞgÞ, the approximation that a relationship
similar to Eq. (19) exists between the individual Gaussian basis
functions m+({n2(zq, t)}) before at the time t = s and after at the time
t = 0+. Operation in this way essentially imparts a coarse grain
approximation to the spatial effects of the applied rf pulse. Even
with this approximation that limits the number of parameters to
be related in one equation from 3(n + 1) to 3, the actual solution
to Eq. (20) still requires that the Gaussian basis function
m+({n2(zq,0+)}) must be fit to the 2h(z) weighted mixture of the
m±({n2(zq,s)}) basis functions. An additional simplification that is
likely the root of the large K value discrepancy between experi-
ment and theory for the spin echo envelope signal shown in
Fig. 2e is that instead of fitting the full Gaussian m+({n2(zq,0+)}) trial
function to the 2h(z) weighted sum of Gaussians m±({n2(zq,s)}),
each Gaussian basis function in Eq. (20) was expanded as
m+({n2(zq, t)}) = 1�n2(zq, t)(z � zq)2 � n1(zq, t)(z � zq) � n0(zq, t). After
the 2h(z) rf pulse, like powers of (z � zq) were equated to generate
three equations to solve for the three unknown parameters
{n2(zq,0+)} in terms of the known parameters {n2(zq,s)} before the
2h(z) rf pulse. This operation will work when 2h(z) = p, but for lar-
ger rf inhomogeneity and or larger magnetic field gradient values
the approximations break down consistent with the results shown
in Fig. 2e. One way to improve the agreement between experiment
and theory in these large K, or poor rf inhomogeneity situations is
to fit either the m+({n2(zq, 0+)}) isochromatic function or the full
wave packet Mwp

� ðfn2ðzn;0þÞgÞ to the t = s trial function distribu-
tions prior to the 2h(z) rf pulse.
6. Conclusion

The DFM variation of parameters is a useful way to approxi-
mately and in some cases exactly solve the time dependent Schrö-
dinger equation. An explanation of how to apply the method to
NMR problems was provided and used to model the effects of
molecular diffusion on experimentally obtained one dimensional
images and spin echo envelope signals. An advantage of this ap-
proach includes flexibility in the choice of a functional solution
to the magnetization dynamics. Parameterized function choices
motivated by experimental data are used to estimate the dynamics
defined by these trial functions. The weakness of the method is
that it does not provide exact solutions to all time domain
problems.

The dynamics of the specific case of molecular diffusion consid-
ered here is exactly solved using Heller’s Gaussian trial function
[17,18]. Superb agreement between experiment and theory is real-
ized by using a Gaussian wave packet trial function to incorporate
rf inhomogeneity effects, an approach that only seems to break
down for spin echo envelope signals recorded for large quadratic
field variations. This deviation between experiment and theory is
likely due to an inaccurate incorporation of the effects of p rf pulse
inhomogeneity in the calculated spin echo signal.
The DFM approach is completely general and can be applied to
any time dependent NMR problem. Current work involves describ-
ing the magnetization dynamics for the inhomogeneous radiation
damped system. As Gaussian functions are not the best trial func-
tion choice for these systems, evaluation of the functional will not
necessarily equal zero. Various trial functions are used to calculate
three component spin echo signals [22] in symmetric and asym-
metric inhomogeneous static magnetic fields. The associated error
estimates of the trial functions are determined by evaluation of the
functional and its proximity to zero. Other effects amenable to
treatment with the DFM variation of parameters include an analyt-
ical description of rf gradient diffusion filters applied to molecular
systems displaying chemically shifted lines, and a number of chal-
lenging solids experiments including decoupling and cross polari-
zation in the presence of high speed magic angle spinning. In
these more general purely quantum mechanical problems the
application of the DFM variation of parameters is more involved.
One approach uses projection operators to first generate a reduced
dimension time dependent differential equation for a subspace of
the overall spin density operator. These projected differential
equations necessarily involve a time dependent convolution inte-
gral of a memory function [26] that can be calculated and a func-
tional can be defined in terms of a manageable set of
parameterized functions that can be optimized according to the
DFM variation of parameters. Coupling this approach to solving
purely quantum mechanical problems with the results provided
here for a semi-classical example imply that any time dependent
phenomena in NMR spectroscopy can be analyzed with the DFM
variation of parameters. It is hoped that this work stimulates addi-
tional applications in the continually broadening field of NMR
spectroscopy.
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